top of page

Invasive Species


we research species that move outside of their native distribution


Our research focuses on the ways biological invasions work and how they alter ecosystems


Contact us if you need a full version ;)


Invasive species and chemical pollution both threaten biodiversity. Here, we discuss how pollution, through its impacts on wildlife behaviour, shapes invasion dynamics by altering species interactions. Addressing knowledge gaps will have implications for the management of invasive species and conservation of native ecosystems in an increasingly toxic world.

Screenshot 2024-01-12 at 10.57.21.png

Poeciliids are widely recognized as successful invaders, possessing traits associated with invasion success. Native to Central America and south-eastern Mexico, the twospot livebearer (Pseudoxiphophorus bimaculatus) is a species recently recognized as invasive in both Central and northern Mexico. Despite its invasive status, limited research exists on its invasion process and the potential threats it poses to native species. In this study, we conducted a comprehensive review of the current knowledge on the twospot livebearer and mapped its current and potential distribution worldwide. The twospot livebearer shares similar traits with other successful invaders within the same family. Notably, it exhibits high fecundity throughout the year and demonstrates resilience to highly polluted and oxygen-deprived water conditions. This fish serves as a host for several parasites, including generalists, and has been extensively translocated for commercial purposes. Recently, it has also been used for biocontrol within its native range. Apart from existing outside its native range, the twospot livebearer, under current climate conditions and if transported there, could readily colonize biodiversity hotspots in tropical zones worldwide, including the Caribbean Islands, the Horn of Africa, North of Madagascar Island, south-eastern Brazil, and others located in southern and eastern Asia. Given that this fish is highly plastic and our Species Distribution Model, we consider that all areas with a habitat suitability >0.2 should prevent its arrival and establishment. Our findings underscore the urgent need to recognize this species as a threat to freshwater native topminnows and prevent its introduction and spread.

Screen Shot 2023-04-18 at 19.52.31.png

Most invasions start with the introduction of a few individuals and the majority fail to establish and become invasive populations. A possible explanation for this is that some species are subject to Allee effects—disadvantages of low densities—and fail to perform vital activities due to the low availability of conspecifics. We propose that ‘facilitation’ from native individuals to non-natives through heterospecific sociability could enhance chances of the latter establishing in novel environments by helping them avoid Allee effects and even reducing the minimum number of non-native individuals necessary to achieve the density for a viable population (the Allee effect threshold). There is evidence from experiments carried out with freshwater fish, snails, lizards, mussels and bird that supports the idea of heterospecific sociability between native and non-native species as a process to promote invasion success. We propose that to understand invasion success in social non-native species we need to investigate how they integrate into the recipient community. Furthermore, to manage them, it may be necessary to reduce population density not just below the Allee effect threshold but also to understand how natives could help them shift the conspecific Allee effect threshold to their benefit.

This article is part of the theme issue ‘Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes’.


Instituto de Ciencias del Mar y Limnología 
Ciudad Universitaria UNAM, Mexico City

+ 52 555 622 5844

Thanks for submitting!

bottom of page